RES 342- FINAL EXAM 1
RES 342- FINAL EXAM 1
RES 342- FINAL EXAM 1
RES 342- FINAL EXAM 1
1) The statement that determines if the null hypothesis is rejected or not is called the
Having Trouble Meeting Your Deadline?
Get your assignment on RES 342- FINAL EXAM 1 completed on time. avoid delay and – ORDER NOW
A. decision rule |
---|
B. critical value |
C. test statistic |
D. alternate hypothesis |
2) What are the critical z-values for a two-tailed hypothesis test if the significant level = 0.01?
A. ± 2.58 | ||||
---|---|---|---|---|
B. ± 1.65 | ||||
C. ± 2.33 | ||||
D. ± 1.96
Struggling to Meet Your Deadline?Get your assignment on RES 342- FINAL EXAM 1 done on time by medical experts. Don’t wait – ORDER NOW! 3) An independent consumer testing lab preformed a statistical test on 25 type-C alkaline batteries and calculated the mean life for a particular use before they failed was 22.5 hours. The distribution of the lives approximated a normal distribution. The standard deviation of the distribution was 1.1 hours. Information on the package states that the batteries should last 24 hours. The test question was if this difference between the test statistics and the stated life of the battery was significant? The .05 significant level was selected for the test. Which is the correct statement?
|
||||
4) K & S Construction, located in Phoenix, Arizona, is working on its business plan for the upcoming year. They did a study to determine if they should focus on building condominiums or individual houses. A building study, which had been conducted by the state, indicated that 60 percent of those families looking to buy a home in Arizona desired to buy a condominium. K & S Construction wanted to know if this figure applied to Phoenix. They collected a sample of 500 individuals that had expressed plans to buy a new home. The z-distribution was selected for this proportion test. The null hypothesis is p = 0.60 and the alternate is p ≠ 0.60. The significant level selected was .05. From the sample of 500, it was determined that 290 wanted to buy a condominium. What decision should be made regarding the null hypothesis?
A. Cannot accept nor reject it based on the information given |
---|
B. The test level of .05 is not acceptable |
C. Reject it |
D. Fail to reject it |
5) In classical hypothesis testing, the test statistic is to the critical value what the ________________.
A. test statistic is to the p-value |
---|
B. level of significance is to the test statistic |
C. critical value is to alpha |
D. p-value is to alpha |
6) A statistician was setting up a hypothesis test with a level of significance dictated by upper management. However, she was concerned that the test she wished to perform might have unacceptable large possibilities of Type II error, ‗. Which of the following would solve this problem?
A. Convince upper management to use a smaller p-value. |
---|
B. Convince upper management to reduce the level of significance of the test. |
C. Convince upper management to use a larger sample. |
D. Convince upper management to use a larger p-value. |
7) Thomas Delivery has a fleet of 24 trucks that are utilized for the companies; business. Electro-Lite, a manufacturer of spark plugs, claims that its spark plugs have an average life in excess of 25,000 miles. The purchasing agent at Thomas Delivery purchased 24 sets and found that the sample average life was 26,300 miles, the sample standard deviation was 1,500 miles, and the computed test statistic was t = 3.423. Based on these findings, at the 0.05 level, is there enough evidence to accept the manufacturer’s claim?
A. Electro-Lite claims are not supported by the test results. |
---|
B. Electro-Lite claims are supported; the spark plugs do exceed the mean of 25,000 miles. |
C. Electro-Lite claims cannot be supported or denied with the test results. |
D. Electro-Lite claims are just an advertising promotion. |
8) A machine is set to fill the small size packages of Good and Better candies are packaged with 60 pieces of candies in each bag. Sampling results revealed: 3 bags of 61, 2 bags of 59, 1 bag of 58, and 2 bags of 62. How many degrees of freedom are there?
A. 9 |
---|
B. 7 |
C. 1 |
D. 8 |
9) If the paired differences are normal in a test of mean differences, then the distribution used for testing is the
A. normal distribution |
---|
B. F distribution |
C. Chi-Square |
D. Student t distribution |
10) Golf balls that are properly manufactured will have a rebound height of 42 inches when dropped by a testing machine from a height of 5 feet. The quality control inspector is concerned that a new manufacturing machine is not properly calibrated and that the resulting golf balls are falling short of the desired height. At random, 100 golf balls were selected for a test. The test results indicated that the rebound height was 41.6 inches with a standard deviation of 0.5. At the .05 significant level, what is the result of the test?
A. There is no significant difference. |
---|
B. A larger test sample is needed. |
C. There is a significant difference; the golf balls are defected. |
D. A decision regarding a significant difference cannot be made. |
11) A recent study by College Stat Company reported a nationwide survey of college students determined that students spend 2 hours studying for each hour in the classroom. Professor Baker at State College wants to determine whether the time students spend at her college is significantly different from the national average of 2 hours. A random sample of 20 statistics students resulted in an average of 1.75 hours with a standard deviation of 0.24 hours. A t-test was conducted at the 5% level of significance. The calculated value of t was -4.03. What was Professor Baker decision?
A. Cannot make a decision at this time; more data is required. |
---|
B. Reject the alternative hypothesis statement. |
C. Fail to reject the null hypothesis. |
D. Reject the null hypothesis, the test statistic exceeds the critical value. |
12) In a test for the equality of two variances (two-tailed), when the populations are normal, a 5% level of significance was used. Sample sizes were n1 = 13 and n2 = 10. The upper critical value for the test is
A. =FINV(0.05, 12, 9). |
---|
B. =FINV(1-0.025, 13, 10). |
C. =FINV(0.025, 12, 9). |
D. =FINV(0.025, 13, 10). |
13) When is it appropriate to use the paired difference t-test?
A. Two independent samples are compared |
---|
B. Two dependent samples are compared |
C. Four samples are compared at once |
D. Any two samples are compared |
14) The owner of a bottling company is considering buying a new bottling machine. He has been testing two different machines that are being considered. After collecting 300 samples from each machine over several weeks, he was able to conduct a two sample z test.
He decided to utilize a 0.05 significant level for the test. The test was to address the claim that the mean weight of the bottles filled by the Orno machine was greater than the mean weight of the bottles filled by the Edne machine. The test statistics was 2.21. What is the decision regarding the hypothesis?
A. Accept the null hypothesis; there is not a significant difference. |
---|
B. This is a two tail test and the critical value for the test is 1.96. |
C. There is not enough data available to answer the question. |
D. Reject the null hypothesis; there is a significant difference. |
15) Accounting procedures allow a business to evaluate their inventory at LIFO (Last In First Out) or FIFO (First In First Out). A manufacturer evaluated its finished goods inventory (in $ thousands) for five products both ways. Based on the following results, is LIFO more effective in keeping the value of his inventory lower?
Product | FIFO (F) | LIFO (L) |
1 | 225 | 221 |
2 | 119 | 100 |
3 | 100 | 113 |
4 | 212 | 200 |
5 | 248 | 245 |
The 5% level of significance was selected for the t value. This example is what type of test?
A. Paired t-test. |
---|
B. Test of proportions. |
C. One sample test of means. |
D. Two sample test of means. |
16) You are conducting a two-tailed test of means, but your software package only calculates a one-tailed p-value equal to 0.13. The actual p-value for your test is
A. 0.26. |
---|
B. You need a table to calculate this value. |
C. 0.13. |
D. 0.065. |
17) A consumer researcher is testing the difference between two proportions at the 0.05 level of significance. The researcher was utilizing the z distribution for the test. If the computed test statistic z value was 1.12, what was the decision?
A. Take a larger sample. |
---|
B. Reserve judgment. |
C. Reject the null hypothesis. |
D. Do not reject the null hypothesis. |
18) What is the critical value for a one-tailed hypothesis test in which a null hypothesis is tested at the 5% level of significance based on two samples, both sample sizes are 13?
A. 1.708 |
---|
B. 2.064 |
C. 2.060 |
D. 1.711 |
19) Watson’s TV claims that their televisions have the best performance record on the market. They advertise that after 3 years only 10% of their sold televisions have had any type of repairs. The president of the company wanted to confirm that this statement was correct. To do this, a sample of 60 sets was taken of sets that had been sold and were at least 3 years old. Twelve percent of these television sets had been in for repair. The null hypothesis is that there is no difference between the stated percent and the sample data. At the .05 significant level, what can we conclude about the null hypothesis?
A. The null hypothesis is rejected and the difference is significant. |
---|
B. The difference is too close to be able to decide. |
C. The sample is too small to be able to decide. |
D. The data fails to reject the null hypothesis. |
20) A trolley system is being planned for the downtown area of Cincinnati, Ohio. To be able to proceed with this project, planners have indicated that at least 20% of the residents of the areas that would be covered need to support the idea. To determine the feelings of these city residents, a sample of 300 residents was taken. Seventeen percent of the sample responded that they would ride the trolley. Is this enough evidence for the project to proceed? Use the .05 level of significant.
A. There is enough evidence; move forward with the project. |
---|
B. A decision cannot be made either yes or no. |
C. There is not enough evidence to support the moving forward with the project. |
D. A t-test would be the best choice for the test. |
21) New college business graduates are finding it difficult to get a job. A business journal has reported that only one in five graduates is able to find a job within 6 months of their graduation. A report by the University of Phoenix indicated that out of a survey of 300 recent business graduates, 75 had jobs. You are a business major at the University of Phoenix and have a concern about getting a job. Based on this data, will a graduate of the University of Phoenix have a better chance of getting a job in the first 6 months after graduation? Use the .05 significant level for the test.
A. No, there is not a significant difference. |
---|
B. The business journal information is incorrect. |
C. Yes, there is a significant difference. |
D. Cannot be predicted based on this data. |
22) Blake’s Mortgage Company utilizes four different appraisers for the purpose of determining the value of a house. There is a concern by the company’s owner that the appraisers are not providing the same estimates. She wants to determine if there is a difference between the four appraisers. Six houses were selected and each appraiser provided an appraisal for each of the six houses. What would be the best statistical test to use for the analysis of this data?
A. A paired t-test |
---|
B. An ANOVA |
C. Chi square test |
D. Kruskal-Wallis test |
23) Analysis of variance is used to
A. compare nominal data |
---|
B. simultaneously compare several population means |
C. compare population proportion |
D. compute t test |
24) The F distribution is utilized with the ANOVA test. There are some basic assumptions associated with the distribution. Which of these assumptions is NOT valid?
Also Check Out: IT 3215 Unit 4 Assignment Form Field Validation and Error Messages
A. It is negatively skewed. |
---|
B. Its values cannot be negative. |
C. There is a family of distributions. |
D. It is a continuous distribution. |
Click here to ORDER an A++ paper from our Verified MASTERS and DOCTORATE WRITERS: RES 342- FINAL EXAM 1
25) If an ANOVA test is conducted and the null hypothesis is rejected, what does this indicate?
A. A difference between at least one pair of population means |
---|
B. The variances are the same |
C. Too many degrees of freedom |
D. No difference between the population means |
26) In ANOVA analysis, when the null hypothesis is rejected, we can find which means are different by
A. doing an additional ANOVA |
---|
B. doing a t test |
C. constructing confidence intervals |
D. adding another treatment |
27) Each Christmas season there is a hot toy that everyone must have, especially if you are under the age of nine. This prized toy can be purchased at many different types of stores. A consumer group wanted to determine if there was a difference in price for the toy depending on where the toy was purchased. Is the price of this toy the same for the different stores or is there a difference? In the Cincinnati area there are three main stores of concern: Wal-Mart, Meijer, and Toys R Us. Data was collected from different stores around the city. Prices will vary depending on the location of the store. The collected data is as follows (in dollars):
Wal-Mart | Meijer | Toys R Us |
15 | 18 | 20 |
12 | 17 | 19 |
12 | 14 | 16 |
14 | 15 | 20 |
13 | 17 | 19 |
Conduct an ANOVA analysis of the data. Is there a significant difference between the three stores?
A. A t-test would have been a better test. |
---|
B. There is a significant difference between the three stores. |
C. The sample needs to be larger to be able to answer the question. |
D. There is not a significant difference between the three stores. |
28) The chi-square distribution becomes more symmetrical as
A. degrees of freedom decrease |
---|
B. degrees of freedom increase |
C. number of variables increase |
D. the chi-square value increases |
29) What nonparametric test is used when the assumptions for the parametric analysis of variance (ANOVA) cannot be met? Its purpose is to test whether three or more populations are equal. The data must be at least ordinal scaled.
A. Mann-Whitney |
---|
B. ANOVA |
C. Students’ t |
D. Kruskal-Wallis |
30) In the chi-squared goodness-of-fit test, if the expected frequencies ei and the observed frequencies fi were quite different, we would conclude that the [ID: 29826]
A. alternative hypothesis is false, and we would reject it |
---|
B. chi-squared distribution is invalid, and we would use the t-distribution instead |
C. null hypothesis is false, and we would reject it |
D. null hypothesis is true, and we would not reject it |
31) The nonparametric counterpart of the randomized block model of the ANOVA is the
A. Wilcoxon rank sum test |
---|
B. Wilcoxon signed rank sum test |
C. Kruskal-Wallis test |
D. Friedman test |
32) Seamen’s Manufacturing has five hundred employees at its plant. These employees are divided into three main groups: administration, clerical, and labor. The company is looking at making some changes to it retirement plan that is available for employees. There are three plans beginning considered. The 500 employees were surveyed regarding their preferences for the various retirement plans. The president is concerned if there is a relationship between the person position in the company and which retirement plan was preferred. Utilize the chi square distribution at the .05 significant level, and determine if there is a relationship between position in company and the retirement plan selected.
Position | Plan A | Plan B | Plan C |
Labor | 170 | 50 | 30 |
Clerical | 30 | 110 | 30 |
Administration | 20 | 20 | 40 |
A. The calculated test result of 7.94 is less than the critical value, so accept the null hypothesis. |
---|
B. The calculated test result of 7.94 is less than the critical value, so reject the null hypothesis. |
C. The calculated test result of 7.94 is greater than the critical value, so accept the null hypothesis. |
D. The calculated test result of 7.94 is greater than the critical value, so reject the null hypothesis. |
33) The Ohio Department of Highways is in the process of selecting a new paint for highway use. Four different paint companies have been contact regarding this need and each of the companies has supplied paint for testing. Before deciding the winner of the new contract, a test was conducted to determine which paint was the best, in terms of how long it would last. The results of the test are as follows:
Category | Paint A | Paint B | Paint C | Paint D |
Days | 345 | 320 | 350 | 310 |
Each paint is expected to last 330 days. Is there a significant difference between these four paints? Use the chi square distribution at the .05 significant level to answer this question.
A. The test result is greater than the critical value, so there is a significant difference. |
---|
B. The test result is less than the critical value, so there is not a significant difference. |
C. A decision cannot be made; more testing is required. |
D. Paint B and D are significantly different then paints A and C. |
34) To determine whether four population means are equal, a sample from each population was selected at random and using the Kruskal-Wallis test, H was computed to be 2.11. What is your decision at the 0.05 level of risk?
A. Fail to reject the null hypothesis because 0.05 < 2.11 |
---|
B. Fail to reject the null hypothesis because 2.11 < 7.815 |
C. Reject the null hypothesis because 2.11 > critical value of 1.96 |
D. Reject the null hypothesis because 7.815 is > 2.11 |
35) State Insurance Company believes that the age of the driver and number of accidents that occurs are related. The feeling is that younger drivers are more careless and will have more accidents. The claims department wants to determine if this line of thinking is correct. To answer this question a random sample of 1500 policyholders was investigated. A chi square analysis was performed on the data at the .05 significant level. The analysis produced a chi square value of 47.56. What is the correct decision regarding the null hypothesis that whether a claim is filed and the age of the policyholder are not related?
A. The sample needs to be larger; no decision can be made. |
---|
B. Reject the null hypothesis; there is a relationship. |
C. The null hypothesis is incorrect. |
D. Accept the null hypothesis; there is no relationship. |
36) Corny’s Feed Company markets four different mixtures of feed for chickens. These feeds have different combinations of ingredients. One question that the manager is often asked by customers is if there is a difference between the four feeds in terms of weight gain. To be able to address this question an analysis was done of the four feeds. They contacted a local farmer to conduct a test regarding the four feeds. There were 28 chickens selected for the test. These chickens were divided into four groups, with each group receiving one of the feeds. The statistical test selected for the analysis was the Kruskal-Wallis test and the .05 significant level was used for the test. The test result was H 4.65. This indicates that
A. the feeds are different |
---|
B. the feeds need to be tested some more before a decision can be made |
C. the feeds are the same |
D. some of the feeds are different |
37) A simple linear regression generated a correlation coefficient of 0.01. This tells us that
A. SSR is almost zero. |
---|
B. SSE is almost zero. |
C. we shall reject the null at less than a 5% significance level. |
D. the two variables barely relate to each other. |
38) What is the variable used to predict another variable called?
A. Independent variable |
---|
B. Dependent variable |
C. Causal variable |
D. Important variable |
39) What does a coefficient of correlation of 0.70 infer?
A. Coefficient of determi
|
---|